{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd \n",
"\n",
"#create new data frame reading in intake data csv file\n",
"intakedata = pd.read_csv('drewsdata/intakedata20181-20193.csv')\n",
"\n",
"#drop null value columns to avoid errors\n",
"intakedata .dropna(inplace = True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Quarter | \n",
" Week | \n",
" Intakes | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Fall 2018 | \n",
" 1 | \n",
" 17 | \n",
"
\n",
" \n",
" 1 | \n",
" Fall 2018 | \n",
" 2 | \n",
" 97 | \n",
"
\n",
" \n",
" 2 | \n",
" Fall 2018 | \n",
" 3 | \n",
" 48 | \n",
"
\n",
" \n",
" 3 | \n",
" Fall 2018 | \n",
" 4 | \n",
" 32 | \n",
"
\n",
" \n",
" 4 | \n",
" Fall 2018 | \n",
" 5 | \n",
" 23 | \n",
"
\n",
" \n",
" 5 | \n",
" Fall 2018 | \n",
" 6 | \n",
" 9 | \n",
"
\n",
" \n",
" 6 | \n",
" Fall 2018 | \n",
" 7 | \n",
" 28 | \n",
"
\n",
" \n",
" 7 | \n",
" Fall 2018 | \n",
" 8 | \n",
" 55 | \n",
"
\n",
" \n",
" 8 | \n",
" Fall 2018 | \n",
" 9 | \n",
" 12 | \n",
"
\n",
" \n",
" 9 | \n",
" Fall 2018 | \n",
" 10 | \n",
" 25 | \n",
"
\n",
" \n",
" 10 | \n",
" Fall 2018 | \n",
" 11 | \n",
" 87 | \n",
"
\n",
" \n",
" 11 | \n",
" Fall 2018 | \n",
" 12 | \n",
" 79 | \n",
"
\n",
" \n",
" 12 | \n",
" Winter 2019 | \n",
" 1 | \n",
" 57 | \n",
"
\n",
" \n",
" 13 | \n",
" Winter 2019 | \n",
" 2 | \n",
" 56 | \n",
"
\n",
" \n",
" 14 | \n",
" Winter 2019 | \n",
" 3 | \n",
" 95 | \n",
"
\n",
" \n",
" 15 | \n",
" Winter 2019 | \n",
" 4 | \n",
" 89 | \n",
"
\n",
" \n",
" 16 | \n",
" Winter 2019 | \n",
" 5 | \n",
" 65 | \n",
"
\n",
" \n",
" 17 | \n",
" Winter 2019 | \n",
" 6 | \n",
" 41 | \n",
"
\n",
" \n",
" 18 | \n",
" Winter 2019 | \n",
" 7 | \n",
" 23 | \n",
"
\n",
" \n",
" 19 | \n",
" Winter 2019 | \n",
" 8 | \n",
" 52 | \n",
"
\n",
" \n",
" 20 | \n",
" Winter 2019 | \n",
" 9 | \n",
" 26 | \n",
"
\n",
" \n",
" 21 | \n",
" Winter 2019 | \n",
" 10 | \n",
" 65 | \n",
"
\n",
" \n",
" 22 | \n",
" Winter 2019 | \n",
" 11 | \n",
" 96 | \n",
"
\n",
" \n",
" 23 | \n",
" Winter 2019 | \n",
" 12 | \n",
" 46 | \n",
"
\n",
" \n",
" 24 | \n",
" Spring 2019 | \n",
" 1 | \n",
" 5 | \n",
"
\n",
" \n",
" 25 | \n",
" Spring 2019 | \n",
" 2 | \n",
" 15 | \n",
"
\n",
" \n",
" 26 | \n",
" Spring 2019 | \n",
" 3 | \n",
" 56 | \n",
"
\n",
" \n",
" 27 | \n",
" Spring 2019 | \n",
" 4 | \n",
" 11 | \n",
"
\n",
" \n",
" 28 | \n",
" Spring 2019 | \n",
" 5 | \n",
" 98 | \n",
"
\n",
" \n",
" 29 | \n",
" Spring 2019 | \n",
" 6 | \n",
" 44 | \n",
"
\n",
" \n",
" 30 | \n",
" Spring 2019 | \n",
" 7 | \n",
" 93 | \n",
"
\n",
" \n",
" 31 | \n",
" Spring 2019 | \n",
" 8 | \n",
" 75 | \n",
"
\n",
" \n",
" 32 | \n",
" Spring 2019 | \n",
" 9 | \n",
" 40 | \n",
"
\n",
" \n",
" 33 | \n",
" Spring 2019 | \n",
" 10 | \n",
" 22 | \n",
"
\n",
" \n",
" 34 | \n",
" Spring 2019 | \n",
" 11 | \n",
" 21 | \n",
"
\n",
" \n",
" 35 | \n",
" Spring 2019 | \n",
" 12 | \n",
" 40 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Quarter Week Intakes\n",
"0 Fall 2018 1 17\n",
"1 Fall 2018 2 97\n",
"2 Fall 2018 3 48\n",
"3 Fall 2018 4 32\n",
"4 Fall 2018 5 23\n",
"5 Fall 2018 6 9\n",
"6 Fall 2018 7 28\n",
"7 Fall 2018 8 55\n",
"8 Fall 2018 9 12\n",
"9 Fall 2018 10 25\n",
"10 Fall 2018 11 87\n",
"11 Fall 2018 12 79\n",
"12 Winter 2019 1 57\n",
"13 Winter 2019 2 56\n",
"14 Winter 2019 3 95\n",
"15 Winter 2019 4 89\n",
"16 Winter 2019 5 65\n",
"17 Winter 2019 6 41\n",
"18 Winter 2019 7 23\n",
"19 Winter 2019 8 52\n",
"20 Winter 2019 9 26\n",
"21 Winter 2019 10 65\n",
"22 Winter 2019 11 96\n",
"23 Winter 2019 12 46\n",
"24 Spring 2019 1 5\n",
"25 Spring 2019 2 15\n",
"26 Spring 2019 3 56\n",
"27 Spring 2019 4 11\n",
"28 Spring 2019 5 98\n",
"29 Spring 2019 6 44\n",
"30 Spring 2019 7 93\n",
"31 Spring 2019 8 75\n",
"32 Spring 2019 9 40\n",
"33 Spring 2019 10 22\n",
"34 Spring 2019 11 21\n",
"35 Spring 2019 12 40"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"pandas.core.frame.DataFrame"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"display(intakedata)\n",
"type(intakedata)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Quarter object\n",
"Week int64\n",
"Intakes int64\n",
"dtype: object"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#check data type in each column\n",
"#are my numbers actually stored as integers?\n",
"intakedata.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 Fall 2018\n",
"1 Fall 2018\n",
"2 Fall 2018\n",
"3 Fall 2018\n",
"4 Fall 2018\n",
"5 Fall 2018\n",
"6 Fall 2018\n",
"7 Fall 2018\n",
"8 Fall 2018\n",
"9 Fall 2018\n",
"10 Fall 2018\n",
"11 Fall 2018\n",
"12 Winter 2019\n",
"13 Winter 2019\n",
"14 Winter 2019\n",
"15 Winter 2019\n",
"16 Winter 2019\n",
"17 Winter 2019\n",
"18 Winter 2019\n",
"19 Winter 2019\n",
"20 Winter 2019\n",
"21 Winter 2019\n",
"22 Winter 2019\n",
"23 Winter 2019\n",
"24 Spring 2019\n",
"25 Spring 2019\n",
"26 Spring 2019\n",
"27 Spring 2019\n",
"28 Spring 2019\n",
"29 Spring 2019\n",
"30 Spring 2019\n",
"31 Spring 2019\n",
"32 Spring 2019\n",
"33 Spring 2019\n",
"34 Spring 2019\n",
"35 Spring 2019\n",
"Name: Quarter, dtype: object"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"pandas.core.series.Series"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#take off year from quarter values, e.g., take off 2018, 2019 from Fall, Winter, Spring\n",
"\n",
"#create new object quarter_without_year to contain only quarter values\n",
"quarter = intakedata['Quarter']\n",
"display(quarter)\n",
"type(quarter)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Fall',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Winter',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring',\n",
" 'Spring']"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#cut off last five characters in each row of quarter, so we just have Fall, Winter, Spring\n",
"quarter_no_year = [x[:-5] for x in quarter]\n",
"display(quarter_no_year)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Quarter | \n",
" Week | \n",
" Intakes | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Fall | \n",
" 1 | \n",
" 17 | \n",
"
\n",
" \n",
" 1 | \n",
" Fall | \n",
" 2 | \n",
" 97 | \n",
"
\n",
" \n",
" 2 | \n",
" Fall | \n",
" 3 | \n",
" 48 | \n",
"
\n",
" \n",
" 3 | \n",
" Fall | \n",
" 4 | \n",
" 32 | \n",
"
\n",
" \n",
" 4 | \n",
" Fall | \n",
" 5 | \n",
" 23 | \n",
"
\n",
" \n",
" 5 | \n",
" Fall | \n",
" 6 | \n",
" 9 | \n",
"
\n",
" \n",
" 6 | \n",
" Fall | \n",
" 7 | \n",
" 28 | \n",
"
\n",
" \n",
" 7 | \n",
" Fall | \n",
" 8 | \n",
" 55 | \n",
"
\n",
" \n",
" 8 | \n",
" Fall | \n",
" 9 | \n",
" 12 | \n",
"
\n",
" \n",
" 9 | \n",
" Fall | \n",
" 10 | \n",
" 25 | \n",
"
\n",
" \n",
" 10 | \n",
" Fall | \n",
" 11 | \n",
" 87 | \n",
"
\n",
" \n",
" 11 | \n",
" Fall | \n",
" 12 | \n",
" 79 | \n",
"
\n",
" \n",
" 12 | \n",
" Winter | \n",
" 1 | \n",
" 57 | \n",
"
\n",
" \n",
" 13 | \n",
" Winter | \n",
" 2 | \n",
" 56 | \n",
"
\n",
" \n",
" 14 | \n",
" Winter | \n",
" 3 | \n",
" 95 | \n",
"
\n",
" \n",
" 15 | \n",
" Winter | \n",
" 4 | \n",
" 89 | \n",
"
\n",
" \n",
" 16 | \n",
" Winter | \n",
" 5 | \n",
" 65 | \n",
"
\n",
" \n",
" 17 | \n",
" Winter | \n",
" 6 | \n",
" 41 | \n",
"
\n",
" \n",
" 18 | \n",
" Winter | \n",
" 7 | \n",
" 23 | \n",
"
\n",
" \n",
" 19 | \n",
" Winter | \n",
" 8 | \n",
" 52 | \n",
"
\n",
" \n",
" 20 | \n",
" Winter | \n",
" 9 | \n",
" 26 | \n",
"
\n",
" \n",
" 21 | \n",
" Winter | \n",
" 10 | \n",
" 65 | \n",
"
\n",
" \n",
" 22 | \n",
" Winter | \n",
" 11 | \n",
" 96 | \n",
"
\n",
" \n",
" 23 | \n",
" Winter | \n",
" 12 | \n",
" 46 | \n",
"
\n",
" \n",
" 24 | \n",
" Spring | \n",
" 1 | \n",
" 5 | \n",
"
\n",
" \n",
" 25 | \n",
" Spring | \n",
" 2 | \n",
" 15 | \n",
"
\n",
" \n",
" 26 | \n",
" Spring | \n",
" 3 | \n",
" 56 | \n",
"
\n",
" \n",
" 27 | \n",
" Spring | \n",
" 4 | \n",
" 11 | \n",
"
\n",
" \n",
" 28 | \n",
" Spring | \n",
" 5 | \n",
" 98 | \n",
"
\n",
" \n",
" 29 | \n",
" Spring | \n",
" 6 | \n",
" 44 | \n",
"
\n",
" \n",
" 30 | \n",
" Spring | \n",
" 7 | \n",
" 93 | \n",
"
\n",
" \n",
" 31 | \n",
" Spring | \n",
" 8 | \n",
" 75 | \n",
"
\n",
" \n",
" 32 | \n",
" Spring | \n",
" 9 | \n",
" 40 | \n",
"
\n",
" \n",
" 33 | \n",
" Spring | \n",
" 10 | \n",
" 22 | \n",
"
\n",
" \n",
" 34 | \n",
" Spring | \n",
" 11 | \n",
" 21 | \n",
"
\n",
" \n",
" 35 | \n",
" Spring | \n",
" 12 | \n",
" 40 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Quarter Week Intakes\n",
"0 Fall 1 17\n",
"1 Fall 2 97\n",
"2 Fall 3 48\n",
"3 Fall 4 32\n",
"4 Fall 5 23\n",
"5 Fall 6 9\n",
"6 Fall 7 28\n",
"7 Fall 8 55\n",
"8 Fall 9 12\n",
"9 Fall 10 25\n",
"10 Fall 11 87\n",
"11 Fall 12 79\n",
"12 Winter 1 57\n",
"13 Winter 2 56\n",
"14 Winter 3 95\n",
"15 Winter 4 89\n",
"16 Winter 5 65\n",
"17 Winter 6 41\n",
"18 Winter 7 23\n",
"19 Winter 8 52\n",
"20 Winter 9 26\n",
"21 Winter 10 65\n",
"22 Winter 11 96\n",
"23 Winter 12 46\n",
"24 Spring 1 5\n",
"25 Spring 2 15\n",
"26 Spring 3 56\n",
"27 Spring 4 11\n",
"28 Spring 5 98\n",
"29 Spring 6 44\n",
"30 Spring 7 93\n",
"31 Spring 8 75\n",
"32 Spring 9 40\n",
"33 Spring 10 22\n",
"34 Spring 11 21\n",
"35 Spring 12 40"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"pandas.core.frame.DataFrame"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#add quarter_no_year back into intakedata, replacing its original Quarter column\n",
"intakedata['Quarter'] = quarter_no_year\n",
"display(intakedata)\n",
"type(intakedata)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"36"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#now that we've finished our data cleanup\n",
"#lets add the two columns to enter # clinicians and #intakes/per clinican\n",
"clinicians = [0]*len(intakedata)\n",
"#display(clinicians)\n",
"len(clinicians)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"intakes_per_clinicians = [0]*len(intakedata)\n",
"#display(intakes_per_clinicians)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Quarter | \n",
" Week | \n",
" Intakes | \n",
" Clinicians | \n",
" Intakes Per Clinicians | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Fall | \n",
" 1 | \n",
" 17 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 1 | \n",
" Fall | \n",
" 2 | \n",
" 97 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 2 | \n",
" Fall | \n",
" 3 | \n",
" 48 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 3 | \n",
" Fall | \n",
" 4 | \n",
" 32 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 4 | \n",
" Fall | \n",
" 5 | \n",
" 23 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 5 | \n",
" Fall | \n",
" 6 | \n",
" 9 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 6 | \n",
" Fall | \n",
" 7 | \n",
" 28 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 7 | \n",
" Fall | \n",
" 8 | \n",
" 55 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 8 | \n",
" Fall | \n",
" 9 | \n",
" 12 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 9 | \n",
" Fall | \n",
" 10 | \n",
" 25 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 10 | \n",
" Fall | \n",
" 11 | \n",
" 87 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 11 | \n",
" Fall | \n",
" 12 | \n",
" 79 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 12 | \n",
" Winter | \n",
" 1 | \n",
" 57 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 13 | \n",
" Winter | \n",
" 2 | \n",
" 56 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 14 | \n",
" Winter | \n",
" 3 | \n",
" 95 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 15 | \n",
" Winter | \n",
" 4 | \n",
" 89 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 16 | \n",
" Winter | \n",
" 5 | \n",
" 65 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 17 | \n",
" Winter | \n",
" 6 | \n",
" 41 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 18 | \n",
" Winter | \n",
" 7 | \n",
" 23 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 19 | \n",
" Winter | \n",
" 8 | \n",
" 52 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 20 | \n",
" Winter | \n",
" 9 | \n",
" 26 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 21 | \n",
" Winter | \n",
" 10 | \n",
" 65 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 22 | \n",
" Winter | \n",
" 11 | \n",
" 96 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 23 | \n",
" Winter | \n",
" 12 | \n",
" 46 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 24 | \n",
" Spring | \n",
" 1 | \n",
" 5 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 25 | \n",
" Spring | \n",
" 2 | \n",
" 15 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 26 | \n",
" Spring | \n",
" 3 | \n",
" 56 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27 | \n",
" Spring | \n",
" 4 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 28 | \n",
" Spring | \n",
" 5 | \n",
" 98 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 29 | \n",
" Spring | \n",
" 6 | \n",
" 44 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 30 | \n",
" Spring | \n",
" 7 | \n",
" 93 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 31 | \n",
" Spring | \n",
" 8 | \n",
" 75 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 32 | \n",
" Spring | \n",
" 9 | \n",
" 40 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 33 | \n",
" Spring | \n",
" 10 | \n",
" 22 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 34 | \n",
" Spring | \n",
" 11 | \n",
" 21 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 35 | \n",
" Spring | \n",
" 12 | \n",
" 40 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Quarter Week Intakes Clinicians Intakes Per Clinicians\n",
"0 Fall 1 17 0 0\n",
"1 Fall 2 97 0 0\n",
"2 Fall 3 48 0 0\n",
"3 Fall 4 32 0 0\n",
"4 Fall 5 23 0 0\n",
"5 Fall 6 9 0 0\n",
"6 Fall 7 28 0 0\n",
"7 Fall 8 55 0 0\n",
"8 Fall 9 12 0 0\n",
"9 Fall 10 25 0 0\n",
"10 Fall 11 87 0 0\n",
"11 Fall 12 79 0 0\n",
"12 Winter 1 57 0 0\n",
"13 Winter 2 56 0 0\n",
"14 Winter 3 95 0 0\n",
"15 Winter 4 89 0 0\n",
"16 Winter 5 65 0 0\n",
"17 Winter 6 41 0 0\n",
"18 Winter 7 23 0 0\n",
"19 Winter 8 52 0 0\n",
"20 Winter 9 26 0 0\n",
"21 Winter 10 65 0 0\n",
"22 Winter 11 96 0 0\n",
"23 Winter 12 46 0 0\n",
"24 Spring 1 5 0 0\n",
"25 Spring 2 15 0 0\n",
"26 Spring 3 56 0 0\n",
"27 Spring 4 11 0 0\n",
"28 Spring 5 98 0 0\n",
"29 Spring 6 44 0 0\n",
"30 Spring 7 93 0 0\n",
"31 Spring 8 75 0 0\n",
"32 Spring 9 40 0 0\n",
"33 Spring 10 22 0 0\n",
"34 Spring 11 21 0 0\n",
"35 Spring 12 40 0 0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"intakedata['Clinicians'] = clinicians\n",
"intakedata['Intakes Per Clinicians'] = intakes_per_clinicians\n",
"#intakedata['Clinics'] = [0]*len(intakedata)\n",
"#del(intakedata['Clinics'])\n",
"display(intakedata)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdin",
"output_type": "stream",
"text": [
"Enter Quarter: Fall, Winter, or Spring Spring\n",
"Enter week: 1-12 12\n",
"Enter Number of Clinicians 38\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Printing Quarter, Week, # Clinicians\n",
"Spring 12 38\n"
]
}
],
"source": [
"#ask for quarter, week, and # of clinicians\n",
"input_quarter = input('Enter Quarter: Fall, Winter, or Spring')\n",
"input_week = input('Enter week: 1-12')\n",
"input_clinicians = input('Enter Number of Clinicians')\n",
"\n",
"print('Printing Quarter, Week, # Clinicians')\n",
"print(input_quarter, input_week, input_clinicians)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"str"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#sanity check, what is the type of input_quarter?\n",
"#type(input_quarter)\n",
"type(input_clinicians) #string, not integer. need to convert to integer later"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 False\n",
"1 False\n",
"2 False\n",
"3 False\n",
"4 False\n",
"5 False\n",
"6 False\n",
"7 False\n",
"8 False\n",
"9 False\n",
"10 False\n",
"11 False\n",
"12 False\n",
"13 False\n",
"14 False\n",
"15 False\n",
"16 False\n",
"17 False\n",
"18 False\n",
"19 False\n",
"20 False\n",
"21 False\n",
"22 False\n",
"23 False\n",
"24 True\n",
"25 True\n",
"26 True\n",
"27 True\n",
"28 True\n",
"29 True\n",
"30 True\n",
"31 True\n",
"32 True\n",
"33 True\n",
"34 True\n",
"35 True\n",
"Name: Quarter, dtype: bool\n"
]
}
],
"source": [
"#let's look at quarter column and match to input_quarter\n",
"#in this case, let's grab all our spring values, should be 12 rows\n",
"match_quarter = intakedata['Quarter'] == input_quarter\n",
"print(match_quarter)\n"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Week | \n",
" Intakes | \n",
" Clinicians | \n",
" Intakes Per Clinicians | \n",
"
\n",
" \n",
" \n",
" \n",
" 24 | \n",
" 1 | \n",
" 5 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 25 | \n",
" 2 | \n",
" 15 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 26 | \n",
" 3 | \n",
" 56 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 27 | \n",
" 4 | \n",
" 11 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 28 | \n",
" 5 | \n",
" 98 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 29 | \n",
" 6 | \n",
" 44 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 30 | \n",
" 7 | \n",
" 93 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 31 | \n",
" 8 | \n",
" 75 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 32 | \n",
" 9 | \n",
" 40 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 33 | \n",
" 10 | \n",
" 22 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 34 | \n",
" 11 | \n",
" 21 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" 35 | \n",
" 12 | \n",
" 40 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Week Intakes Clinicians Intakes Per Clinicians\n",
"24 1 5 0 0\n",
"25 2 15 0 0\n",
"26 3 56 0 0\n",
"27 4 11 0 0\n",
"28 5 98 0 0\n",
"29 6 44 0 0\n",
"30 7 93 0 0\n",
"31 8 75 0 0\n",
"32 9 40 0 0\n",
"33 10 22 0 0\n",
"34 11 21 0 0\n",
"35 12 40 0 0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#creating new dataframe with TRUE values within intakedata, \n",
"#here it is looking for rows 24-35\n",
"intake_match_quarter = intakedata[match_quarter]\n",
"#display(intake_match_quarter)\n",
"\n",
"#look at column headings\n",
"#intake_match_quarter.columns\n",
"#type(intake_match_quarter)\n",
"\n",
"intake_match_quarter = pd.DataFrame(intake_match_quarter, columns=['Week','Intakes','Clinicians',\n",
" 'Intakes Per Clinicians'])\n",
"display(intake_match_quarter)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"12\n"
]
},
{
"data": {
"text/plain": [
"int"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#now let's look at week, isolate by input_week row\n",
"print(input_week)\n",
"type(input_week)\n",
"\n",
"#convert input_week from string to integer\n",
"input_week = int(input_week)\n",
"type(input_week)\n"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Week | \n",
" Intakes | \n",
" Clinicians | \n",
" Intakes Per Clinicians | \n",
"
\n",
" \n",
" \n",
" \n",
" 35 | \n",
" 12 | \n",
" 40 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Week Intakes Clinicians Intakes Per Clinicians\n",
"35 12 40 0 0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#create new dataframe copy of intake_match_quarter, filter by week\n",
"match_week = intake_match_quarter['Week'] == input_week #which rows match input_week=12\n",
"type(match_week)\n",
"#display(match_week)\n",
"#create new data frame intake_match_week to house my input_week=12 match\n",
"intake_match_week = intake_match_quarter[match_week]\n",
"display(intake_match_week)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Intakes | \n",
" Clinicians | \n",
" Intakes Per Clinicians | \n",
"
\n",
" \n",
" \n",
" \n",
" 35 | \n",
" 40 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Intakes Clinicians Intakes Per Clinicians\n",
"35 40 0 0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"newintake = pd.DataFrame(intake_match_week, columns = ['Intakes','Clinicians','Intakes Per Clinicians'])\n",
"display(newintake)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"type(input_clinicians)\n",
"input_clinicians = int(input_clinicians)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Intakes | \n",
" Clinicians | \n",
" Intakes Per Clinicians | \n",
"
\n",
" \n",
" \n",
" \n",
" 35 | \n",
" 40 | \n",
" 38 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Intakes Clinicians Intakes Per Clinicians\n",
"35 40 38 0"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"newintake['Clinicians'] = input_clinicians\n",
"display(newintake)"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Intakes | \n",
" Clinicians | \n",
" Intakes Per Clinicians | \n",
"
\n",
" \n",
" \n",
" \n",
" 35 | \n",
" 40 | \n",
" 38 | \n",
" 1.052632 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Intakes Clinicians Intakes Per Clinicians\n",
"35 40 38 1.052632"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"newintake['Intakes Per Clinicians'] = newintake['Intakes'] / newintake['Clinicians']\n",
"display(newintake)"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Quarter: Spring\n",
"Week: 12\n",
"#Clinicans: 38\n",
"Intakes Per Clinicians 1.0526315789473684\n"
]
}
],
"source": [
"print(\"Quarter:\", input_quarter)\n",
"print(\"Week:\", input_week)\n",
"print(\"#Clinicans:\", input_clinicians)\n",
"print(\"Intakes Per Clinicians\", float(newintake['Intakes Per Clinicians']))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}