Dataframe Manipulation with tidyr

Overview

Teaching: 30 min
Exercises: 15 min
Questions
  • How can I change the format of dataframes?

Objectives
  • To be understand the concepts of ‘long’ and ‘wide’ data formats and be able to convert between them with tidyr.

Researchers often want to manipulate their data from the ‘wide’ to the ‘long’ format, or vice-versa. The ‘long’ format is where:

In the ‘long’ format, you usually have 1 column for the observed variable and the other columns are ID variables.

For the ‘wide’ format each row is often a site/subject/patient and you have multiple observation variables containing the same type of data. These can be either repeated observations over time, or observation of multiple variables (or a mix of both). You may find data input may be simpler or some other applications may prefer the ‘wide’ format. However, many of R’s functions have been designed assuming you have ‘long’ format data. This tutorial will help you efficiently transform your data regardless of original format.

These data formats mainly affect readability. For humans, the wide format is often more intuitive since we can often see more of the data on the screen due to its shape. However, the long format is more machine readable and is closer to the formatting of databases. The ID variables in our dataframes are similar to the fields in a database and observed variables are like the database values.

Getting started

First install the packages if you haven’t already done so (you probably installed dplyr in the previous lesson):

#install.packages("tidyr")
#install.packages("dplyr")

Load the packages

library("tidyr")
library("dplyr")

First, lets look at the structure of our original gapminder dataframe:

str(gapminder)
'data.frame':	1704 obs. of  6 variables:
 $ country  : chr  "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
 $ year     : int  1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
 $ pop      : num  8425333 9240934 10267083 11537966 13079460 ...
 $ continent: chr  "Asia" "Asia" "Asia" "Asia" ...
 $ lifeExp  : num  28.8 30.3 32 34 36.1 ...
 $ gdpPercap: num  779 821 853 836 740 ...

Challenge 1

Is gapminder a purely long, purely wide, or some intermediate format?

Solution to Challenge 1

The original gapminder data.frame is in an intermediate format. It is not purely long since it had multiple observation variables (pop,lifeExp,gdpPercap).

Sometimes, as with the gapminder dataset, we have multiple types of observed data. It is somewhere in between the purely ‘long’ and ‘wide’ data formats. We have 3 “ID variables” (continent, country, year) and 3 “Observation variables” (pop,lifeExp,gdpPercap). I usually prefer my data in this intermediate format in most cases despite not having ALL observations in 1 column given that all 3 observation variables have different units. There are few operations that would need us to stretch out this dataframe any longer (i.e. 4 ID variables and 1 Observation variable).

While using many of the functions in R, which are often vector based, you usually do not want to do mathematical operations on values with different units. For example, using the purely long format, a single mean for all of the values of population, life expectancy, and GDP would not be meaningful since it would return the mean of values with 3 incompatible units. The solution is that we first manipulate the data either by grouping (see the lesson on dplyr), or we change the structure of the dataframe. Note: Some plotting functions in R actually work better in the wide format data.

From wide to long format with gather()

Until now, we’ve been using the nicely formatted original gapminder dataset, but ‘real’ data (i.e. our own research data) will never be so well organized. Here let’s start with the wide format version of the gapminder dataset.

Download the wide version of the gapminder data from here and save it in your data folder.

We’ll load the data file and look at it. Note: we don’t want our continent and country columns to be factors, so we use the stringsAsFactors argument for read.csv() to disable that.

gap_wide <- read.csv("data/gapminder_wide.csv", stringsAsFactors = FALSE)
str(gap_wide)
'data.frame':	142 obs. of  38 variables:
 $ continent     : chr  "Africa" "Africa" "Africa" "Africa" ...
 $ country       : chr  "Algeria" "Angola" "Benin" "Botswana" ...
 $ gdpPercap_1952: num  2449 3521 1063 851 543 ...
 $ gdpPercap_1957: num  3014 3828 960 918 617 ...
 $ gdpPercap_1962: num  2551 4269 949 984 723 ...
 $ gdpPercap_1967: num  3247 5523 1036 1215 795 ...
 $ gdpPercap_1972: num  4183 5473 1086 2264 855 ...
 $ gdpPercap_1977: num  4910 3009 1029 3215 743 ...
 $ gdpPercap_1982: num  5745 2757 1278 4551 807 ...
 $ gdpPercap_1987: num  5681 2430 1226 6206 912 ...
 $ gdpPercap_1992: num  5023 2628 1191 7954 932 ...
 $ gdpPercap_1997: num  4797 2277 1233 8647 946 ...
 $ gdpPercap_2002: num  5288 2773 1373 11004 1038 ...
 $ gdpPercap_2007: num  6223 4797 1441 12570 1217 ...
 $ lifeExp_1952  : num  43.1 30 38.2 47.6 32 ...
 $ lifeExp_1957  : num  45.7 32 40.4 49.6 34.9 ...
 $ lifeExp_1962  : num  48.3 34 42.6 51.5 37.8 ...
 $ lifeExp_1967  : num  51.4 36 44.9 53.3 40.7 ...
 $ lifeExp_1972  : num  54.5 37.9 47 56 43.6 ...
 $ lifeExp_1977  : num  58 39.5 49.2 59.3 46.1 ...
 $ lifeExp_1982  : num  61.4 39.9 50.9 61.5 48.1 ...
 $ lifeExp_1987  : num  65.8 39.9 52.3 63.6 49.6 ...
 $ lifeExp_1992  : num  67.7 40.6 53.9 62.7 50.3 ...
 $ lifeExp_1997  : num  69.2 41 54.8 52.6 50.3 ...
 $ lifeExp_2002  : num  71 41 54.4 46.6 50.6 ...
 $ lifeExp_2007  : num  72.3 42.7 56.7 50.7 52.3 ...
 $ pop_1952      : num  9279525 4232095 1738315 442308 4469979 ...
 $ pop_1957      : num  10270856 4561361 1925173 474639 4713416 ...
 $ pop_1962      : num  11000948 4826015 2151895 512764 4919632 ...
 $ pop_1967      : num  12760499 5247469 2427334 553541 5127935 ...
 $ pop_1972      : num  14760787 5894858 2761407 619351 5433886 ...
 $ pop_1977      : num  17152804 6162675 3168267 781472 5889574 ...
 $ pop_1982      : num  20033753 7016384 3641603 970347 6634596 ...
 $ pop_1987      : num  23254956 7874230 4243788 1151184 7586551 ...
 $ pop_1992      : num  26298373 8735988 4981671 1342614 8878303 ...
 $ pop_1997      : num  29072015 9875024 6066080 1536536 10352843 ...
 $ pop_2002      : int  31287142 10866106 7026113 1630347 12251209 7021078 15929988 4048013 8835739 614382 ...
 $ pop_2007      : int  33333216 12420476 8078314 1639131 14326203 8390505 17696293 4369038 10238807 710960 ...

The first step towards getting our nice intermediate data format is to convert from the wide to the long format. The tidyr function gather() will ‘gather’ your observation variables into a single variable.

gap_long <- gap_wide %>%
    gather(obstype_year, obs_values, starts_with('pop'),
           starts_with('lifeExp'), starts_with('gdpPercap'))
str(gap_long)
'data.frame':	5112 obs. of  4 variables:
 $ continent   : chr  "Africa" "Africa" "Africa" "Africa" ...
 $ country     : chr  "Algeria" "Angola" "Benin" "Botswana" ...
 $ obstype_year: chr  "pop_1952" "pop_1952" "pop_1952" "pop_1952" ...
 $ obs_values  : num  9279525 4232095 1738315 442308 4469979 ...

Here we have used piping syntax which is similar to what we were doing in the previous lesson with dplyr. In fact, these are compatible and you can use a mix of tidyr and dplyr functions by piping them together

Inside gather() we first name the new column for the new ID variable (obstype_year), the name for the new amalgamated observation variable (obs_value), then the names of the old observation variable. We could have typed out all the observation variables, but as in the select() function (see dplyr lesson), we can use the starts_with() argument to select all variables that starts with the desired character string. Gather also allows the alternative syntax of using the - symbol to identify which variables are not to be gathered (i.e. ID variables)

gap_long <- gap_wide %>% gather(obstype_year,obs_values,-continent,-country)
str(gap_long)
'data.frame':	5112 obs. of  4 variables:
 $ continent   : chr  "Africa" "Africa" "Africa" "Africa" ...
 $ country     : chr  "Algeria" "Angola" "Benin" "Botswana" ...
 $ obstype_year: chr  "gdpPercap_1952" "gdpPercap_1952" "gdpPercap_1952" "gdpPercap_1952" ...
 $ obs_values  : num  2449 3521 1063 851 543 ...

That may seem trivial with this particular dataframe, but sometimes you have 1 ID variable and 40 Observation variables with irregular variables names. The flexibility is a huge time saver!

Now obstype_year actually contains 2 pieces of information, the observation type (pop,lifeExp, or gdpPercap) and the year. We can use the separate() function to split the character strings into multiple variables

gap_long <- gap_long %>% separate(obstype_year,into=c('obs_type','year'),sep="_")
gap_long$year <- as.integer(gap_long$year)

Challenge 2

Using gap_long, calculate the mean life expectancy, population, and gdpPercap for each continent. Hint: use the group_by() and summarize() functions we learned in the dplyr lesson

Solution to Challenge 2

gap_long %>% group_by(continent,obs_type) %>%
   summarize(means=mean(obs_values))
# A tibble: 15 x 3
# Groups:   continent [?]
  continent obs_type       means
  <chr>     <chr>          <dbl>
1 Africa    gdpPercap     2194. 
2 Africa    lifeExp         48.9
3 Africa    pop        9916003. 
4 Americas  gdpPercap     7136. 
5 Americas  lifeExp         64.7
6 Americas  pop       24504795. 
7 Asia      gdpPercap     7902. 
8 Asia      lifeExp         60.1
9 Asia      pop       77038722. 
10 Europe    gdpPercap    14469. 
11 Europe    lifeExp         71.9
12 Europe    pop       17169765. 
13 Oceania   gdpPercap    18622. 
14 Oceania   lifeExp         74.3
15 Oceania   pop        8874672. 

From long to intermediate format with spread()

It is always good to check work. So, let’s use the opposite of gather() to spread our observation variables back out with the aptly named spread(). We can then spread our gap_long() to the original intermediate format or the widest format. Let’s start with the intermediate format.

gap_normal <- gap_long %>% spread(obs_type,obs_values)
dim(gap_normal)
[1] 1704    6
dim(gapminder)
[1] 1704    6
names(gap_normal)
[1] "continent" "country"   "year"      "gdpPercap" "lifeExp"   "pop"      
names(gapminder)
[1] "country"   "year"      "pop"       "continent" "lifeExp"   "gdpPercap"

Now we’ve got an intermediate dataframe gap_normal with the same dimensions as the original gapminder, but the order of the variables is different. Let’s fix that before checking if they are all.equal().

gap_normal <- gap_normal[,names(gapminder)]
all.equal(gap_normal,gapminder)
[1] "Component \"country\": 1704 string mismatches"              
[2] "Component \"pop\": Mean relative difference: 1.634504"      
[3] "Component \"continent\": 1212 string mismatches"            
[4] "Component \"lifeExp\": Mean relative difference: 0.203822"  
[5] "Component \"gdpPercap\": Mean relative difference: 1.162302"
head(gap_normal)
  country year      pop continent lifeExp gdpPercap
1 Algeria 1952  9279525    Africa  43.077  2449.008
2 Algeria 1957 10270856    Africa  45.685  3013.976
3 Algeria 1962 11000948    Africa  48.303  2550.817
4 Algeria 1967 12760499    Africa  51.407  3246.992
5 Algeria 1972 14760787    Africa  54.518  4182.664
6 Algeria 1977 17152804    Africa  58.014  4910.417
head(gapminder)
      country year      pop continent lifeExp gdpPercap
1 Afghanistan 1952  8425333      Asia  28.801  779.4453
2 Afghanistan 1957  9240934      Asia  30.332  820.8530
3 Afghanistan 1962 10267083      Asia  31.997  853.1007
4 Afghanistan 1967 11537966      Asia  34.020  836.1971
5 Afghanistan 1972 13079460      Asia  36.088  739.9811
6 Afghanistan 1977 14880372      Asia  38.438  786.1134

We’re almost there, the original was sorted by country, continent, then year.

gap_normal <- gap_normal %>% arrange(country,continent,year)
all.equal(gap_normal,gapminder)
[1] TRUE

That’s great! We’ve gone from the longest format back to the intermediate and we didn’t introduce any errors in our code.

Now lets convert the long all the way back to the wide. In the wide format, we will keep country and continent as ID variables and spread the observations across the 3 metrics (pop,lifeExp,gdpPercap) and time (year). First we need to create appropriate labels for all our new variables (time*metric combinations) and we also need to unify our ID variables to simplify the process of defining gap_wide

gap_temp <- gap_long %>% unite(var_ID,continent,country,sep="_")
str(gap_temp)
'data.frame':	5112 obs. of  4 variables:
 $ var_ID    : chr  "Africa_Algeria" "Africa_Angola" "Africa_Benin" "Africa_Botswana" ...
 $ obs_type  : chr  "gdpPercap" "gdpPercap" "gdpPercap" "gdpPercap" ...
 $ year      : int  1952 1952 1952 1952 1952 1952 1952 1952 1952 1952 ...
 $ obs_values: num  2449 3521 1063 851 543 ...
gap_temp <- gap_long %>%
    unite(ID_var,continent,country,sep="_") %>%
    unite(var_names,obs_type,year,sep="_")
str(gap_temp)
'data.frame':	5112 obs. of  3 variables:
 $ ID_var    : chr  "Africa_Algeria" "Africa_Angola" "Africa_Benin" "Africa_Botswana" ...
 $ var_names : chr  "gdpPercap_1952" "gdpPercap_1952" "gdpPercap_1952" "gdpPercap_1952" ...
 $ obs_values: num  2449 3521 1063 851 543 ...

Using unite() we now have a single ID variable which is a combination of continent,country,and we have defined variable names. We’re now ready to pipe in spread()

gap_wide_new <- gap_long %>%
    unite(ID_var,continent,country,sep="_") %>%
    unite(var_names,obs_type,year,sep="_") %>%
    spread(var_names,obs_values)
str(gap_wide_new)
'data.frame':	142 obs. of  37 variables:
 $ ID_var        : chr  "Africa_Algeria" "Africa_Angola" "Africa_Benin" "Africa_Botswana" ...
 $ gdpPercap_1952: num  2449 3521 1063 851 543 ...
 $ gdpPercap_1957: num  3014 3828 960 918 617 ...
 $ gdpPercap_1962: num  2551 4269 949 984 723 ...
 $ gdpPercap_1967: num  3247 5523 1036 1215 795 ...
 $ gdpPercap_1972: num  4183 5473 1086 2264 855 ...
 $ gdpPercap_1977: num  4910 3009 1029 3215 743 ...
 $ gdpPercap_1982: num  5745 2757 1278 4551 807 ...
 $ gdpPercap_1987: num  5681 2430 1226 6206 912 ...
 $ gdpPercap_1992: num  5023 2628 1191 7954 932 ...
 $ gdpPercap_1997: num  4797 2277 1233 8647 946 ...
 $ gdpPercap_2002: num  5288 2773 1373 11004 1038 ...
 $ gdpPercap_2007: num  6223 4797 1441 12570 1217 ...
 $ lifeExp_1952  : num  43.1 30 38.2 47.6 32 ...
 $ lifeExp_1957  : num  45.7 32 40.4 49.6 34.9 ...
 $ lifeExp_1962  : num  48.3 34 42.6 51.5 37.8 ...
 $ lifeExp_1967  : num  51.4 36 44.9 53.3 40.7 ...
 $ lifeExp_1972  : num  54.5 37.9 47 56 43.6 ...
 $ lifeExp_1977  : num  58 39.5 49.2 59.3 46.1 ...
 $ lifeExp_1982  : num  61.4 39.9 50.9 61.5 48.1 ...
 $ lifeExp_1987  : num  65.8 39.9 52.3 63.6 49.6 ...
 $ lifeExp_1992  : num  67.7 40.6 53.9 62.7 50.3 ...
 $ lifeExp_1997  : num  69.2 41 54.8 52.6 50.3 ...
 $ lifeExp_2002  : num  71 41 54.4 46.6 50.6 ...
 $ lifeExp_2007  : num  72.3 42.7 56.7 50.7 52.3 ...
 $ pop_1952      : num  9279525 4232095 1738315 442308 4469979 ...
 $ pop_1957      : num  10270856 4561361 1925173 474639 4713416 ...
 $ pop_1962      : num  11000948 4826015 2151895 512764 4919632 ...
 $ pop_1967      : num  12760499 5247469 2427334 553541 5127935 ...
 $ pop_1972      : num  14760787 5894858 2761407 619351 5433886 ...
 $ pop_1977      : num  17152804 6162675 3168267 781472 5889574 ...
 $ pop_1982      : num  20033753 7016384 3641603 970347 6634596 ...
 $ pop_1987      : num  23254956 7874230 4243788 1151184 7586551 ...
 $ pop_1992      : num  26298373 8735988 4981671 1342614 8878303 ...
 $ pop_1997      : num  29072015 9875024 6066080 1536536 10352843 ...
 $ pop_2002      : num  31287142 10866106 7026113 1630347 12251209 ...
 $ pop_2007      : num  33333216 12420476 8078314 1639131 14326203 ...

Challenge 3

Take this 1 step further and create a gap_ludicrously_wide format data by spreading over countries, year and the 3 metrics? Hint this new dataframe should only have 5 rows.

Solution to Challenge 3

gap_ludicrously_wide <- gap_long %>%
   unite(var_names,obs_type,year,country,sep="_") %>%
   spread(var_names,obs_values)

Now we have a great ‘wide’ format dataframe, but the ID_var could be more usable, let’s separate it into 2 variables with separate()

gap_wide_betterID <- separate(gap_wide_new,ID_var,c("continent","country"),sep="_")
gap_wide_betterID <- gap_long %>%
    unite(ID_var, continent,country,sep="_") %>%
    unite(var_names, obs_type,year,sep="_") %>%
    spread(var_names, obs_values) %>%
    separate(ID_var, c("continent","country"),sep="_")
str(gap_wide_betterID)
'data.frame':	142 obs. of  38 variables:
 $ continent     : chr  "Africa" "Africa" "Africa" "Africa" ...
 $ country       : chr  "Algeria" "Angola" "Benin" "Botswana" ...
 $ gdpPercap_1952: num  2449 3521 1063 851 543 ...
 $ gdpPercap_1957: num  3014 3828 960 918 617 ...
 $ gdpPercap_1962: num  2551 4269 949 984 723 ...
 $ gdpPercap_1967: num  3247 5523 1036 1215 795 ...
 $ gdpPercap_1972: num  4183 5473 1086 2264 855 ...
 $ gdpPercap_1977: num  4910 3009 1029 3215 743 ...
 $ gdpPercap_1982: num  5745 2757 1278 4551 807 ...
 $ gdpPercap_1987: num  5681 2430 1226 6206 912 ...
 $ gdpPercap_1992: num  5023 2628 1191 7954 932 ...
 $ gdpPercap_1997: num  4797 2277 1233 8647 946 ...
 $ gdpPercap_2002: num  5288 2773 1373 11004 1038 ...
 $ gdpPercap_2007: num  6223 4797 1441 12570 1217 ...
 $ lifeExp_1952  : num  43.1 30 38.2 47.6 32 ...
 $ lifeExp_1957  : num  45.7 32 40.4 49.6 34.9 ...
 $ lifeExp_1962  : num  48.3 34 42.6 51.5 37.8 ...
 $ lifeExp_1967  : num  51.4 36 44.9 53.3 40.7 ...
 $ lifeExp_1972  : num  54.5 37.9 47 56 43.6 ...
 $ lifeExp_1977  : num  58 39.5 49.2 59.3 46.1 ...
 $ lifeExp_1982  : num  61.4 39.9 50.9 61.5 48.1 ...
 $ lifeExp_1987  : num  65.8 39.9 52.3 63.6 49.6 ...
 $ lifeExp_1992  : num  67.7 40.6 53.9 62.7 50.3 ...
 $ lifeExp_1997  : num  69.2 41 54.8 52.6 50.3 ...
 $ lifeExp_2002  : num  71 41 54.4 46.6 50.6 ...
 $ lifeExp_2007  : num  72.3 42.7 56.7 50.7 52.3 ...
 $ pop_1952      : num  9279525 4232095 1738315 442308 4469979 ...
 $ pop_1957      : num  10270856 4561361 1925173 474639 4713416 ...
 $ pop_1962      : num  11000948 4826015 2151895 512764 4919632 ...
 $ pop_1967      : num  12760499 5247469 2427334 553541 5127935 ...
 $ pop_1972      : num  14760787 5894858 2761407 619351 5433886 ...
 $ pop_1977      : num  17152804 6162675 3168267 781472 5889574 ...
 $ pop_1982      : num  20033753 7016384 3641603 970347 6634596 ...
 $ pop_1987      : num  23254956 7874230 4243788 1151184 7586551 ...
 $ pop_1992      : num  26298373 8735988 4981671 1342614 8878303 ...
 $ pop_1997      : num  29072015 9875024 6066080 1536536 10352843 ...
 $ pop_2002      : num  31287142 10866106 7026113 1630347 12251209 ...
 $ pop_2007      : num  33333216 12420476 8078314 1639131 14326203 ...
all.equal(gap_wide, gap_wide_betterID)
[1] TRUE

There and back again!

Other great resources

Key Points

  • Use the tidyr package to change the layout of dataframes.

  • Use gather() to go from wide to long format.

  • Use spread() to go from long to wide format.